JavaScript 基础 · 254/290
1. Ajax、Axios 和 Fetch 的区别 2. 数组 length 为 0 时访问元素 3. addEventListener 第三个参数 4. Array.prototype.slice.apply(arguments) 5. Animation、Transition、Transform 区别 6. 伪数组与真数组的转换 7. 类数组对象 8. 数组按属性值排序 9. 箭头函数与普通函数的区别 10. AST 抽象语法树 11. attribute 与 property 的区别 12. Babel 编译工具 13. async/await 原理解析 14. 异步编程实现方式 15. forEach 中使用 await 16. 异步任务批量执行结果获取 17. Base64 编码为何增大数据量 18. BigInt 数据类型 19. JavaScript 二分查找实现 20. JavaScript 实现二叉排序树 21. bind 连续调用的 this 绑定 22. 浏览器缓存机制 23. bind、call、apply 的区别与实现 24. 浏览器进程和线程 25. callee 与 caller 属性 26. 浏览器版本检测 27. Canvas 黑块计数 28. Canvas 跨域图片数据获取 29. Canvas 与 WebGL 区别 30. 浏览器从输入网址到页面显示的过程 31. 判断对象是否为空 32. 摄氏度转华氏度 33. JavaScript 变量与函数提升 34. 移动端点击穿透问题 35. JavaScript 变量提升与函数提升 36. setTimeout 在循环中的执行时机 37. 转盘组件设计与防刷方案 38. Promise.resolve 返回 Promise 的执行顺序 39. 静态资源 CDN 部署 40. typeof 运算符的执行顺序 41. typeof 和暂时性死区的执行分析 42. 箭头函数与普通函数的 this 和 new 行为 43. this 指向判断 44. Cookie 过期时间设置为 0 的行为 45. typeof 和暂时性死区的执行分析 46. 浏览器跨域限制的原因 47. Company Culture Fit 48. Cookie、LocalStorage 和 SessionStorage 的区别 49. 前端跨域请求解决方案 50. 统计 HTML 页面标签种类数 51. 浏览器标签页间通信 52. 什么是跨域 53. 前端跨页面通信方法 54. CSS 和 JS 文件是否阻塞页面渲染 55. CSR 与 SSR 渲染模式 56. CSS 动画与 JS 动画对比 57. JavaScript vs CSS 动画 58. 十进制转二进制 59. 判断 PC 端还是移动端 60. 深拷贝与浅拷贝 61. document.write 与 innerHTML 的区别 62. document.ready vs window.onload 63. JavaScript 实现拖拽功能 64. DOM 和 BOM 的区别 65. Element Dimension Properties 66. 空数组调用 reduce 67. enumerable 属性忽略规则 68. devDependencies 与 dependencies 的区别 69. 判断脚本运行环境(浏览器或 Node) 70. 判断空对象的方法 71. ES6 Decorator 装饰器 72. 面试必问问题 73. eval 函数的作用与弊端 74. 事件捕获与冒泡执行顺序 75. 事件代理 76. 解释 JavaScript 事件循环 77. 执行上下文与作用域链 78. React setState 批量更新机制 79. 事件冒泡和捕获机制 80. ES6+ 新特性概览 81. 函数是一等公民 82. 浮点数精度问题:0.1 + 0.2 83. 表达式 123['toString'].length + 123 的输出 84. flexible.js 移动端适配原理 85. forEach 循环中断 86. 前端路由的实现与应用 87. 前端动画实现方式 88. 前端面试流程 89. 前端性能优化指标与检测方法 90. 前端路由历史栈结构 91. JavaScript 函数声明方式及区别 92. 函数调用方式 93. 获取页面滚动距离 94. 函数原型链输出结果 95. 生成 1-10000 的数组 96. 函数式编程概念 97. 全局函数与全局变量 98. 堆与栈的区别 99. HTTP/2 多路复用原理 100. HTTPS 握手过程 101. 立即执行函数表达式(IIFE) 102. isNaN 与 Number.isNaN 的区别 103. 图片搜索系统设计 104. 面试关键点 105. 实现可迭代对象 106. JavaScript 内置对象 107. Iterator 迭代器与 Generator 生成器 108. JavaScript 的组成部分 109. JavaScript 内置对象 110. 闭包:概念、应用与内存管理 111. JavaScript 垃圾回收机制 112. JavaScript 错误类型 113. JavaScript 数据类型与检测方法 114. JavaScript 动态生成海报 115. JavaScript 对象定义方法 116. Promise 原理与用法 117. JavaScript 请求取消 118. JavaScript 单线程模型 119. JavaScript 继承方式对比 120. JavaScript 对象生命周期 121. this 的指向规则 122. jQuery.fn.init 返回的 this 123. jQuery 对象特点 124. Job Fit Assessment 125. JS 文件对 DOM 和 CSSOM 的阻塞 126. JSBridge 原理 127. JSON 基础 128. 0-1 背包问题 129. 大文件上传实现 130. Job Handover and Benefits 131. setTimeout 循环输出问题 132. 低代码平台技术实现 133. 宏任务与微任务的执行优先级 134. map(parseInt) 返回值问题 135. map(parseInt) 输出分析 136. 实现 LRU 缓存 137. map 与 filter 的区别 138. Map、Set、WeakMap、WeakSet 的区别 139. Math.ceil 和 Math.floor 的区别 140. 使用 Math 方法获取数组最值 141. Math.random() 在中奖概率计算中的安全问题 142. Math 取整方法的区别 143. 内存泄漏的场景与检测 144. 最大子序和 145. 合并连续数字 146. 什么是微前端 147. MessageChannel 的用法和应用场景 148. MessageChannel 的用途和场景 149. 微前端应用隔离 150. 实现 mergePromise 函数 151. 微前端解决的问题 152. 移动端样式适配 153. 模块化方案对比:CommonJS、AMD、ES Module 154. mouseEnter 和 mouseOver 的区别 155. 为按钮绑定多个 onclick 事件 156. 微前端技术方案 157. 移动端点击延迟问题 158. 多 tab 页通信方案 159. 实现 Promise.all 方法 160. 实现数组的 map 方法 161. 原生 JavaScript 知识体系 162. 计算机网络模型 163. new fn 与 new fn() 的区别 164. Node ES Module 为什么需要文件扩展名 165. new 操作符的执行过程 166. 不冒泡的事件类型 167. 非递归遍历二叉树 168. null 与 undefined 的区别 169. npm 包管理器 170. 空值合并运算符(??)使用场景 171. 数字转汉语输出函数 172. Object.create 与 new 的区别 173. 数字转中文 174. 数字分隔符的相等性判断 175. JavaScript 创建对象的方法 176. 对象解构赋值的实现方式 177. 面向对象编程 178. 让对象支持数组解构赋值 179. 面向对象编程思想 180. Object 与 Map 的区别 181. 面向对象与面向过程编程 182. OOP Three Principles 183. 前端页面截图实现 184. 页面生命周期事件 185. 轮询机制实现 186. 个人经历 187. Portal 子组件的事件冒泡 188. Personal Qualities 189. pnpm 包管理工具 190. 什么是 Polyfill 191. postMessage 跨域通信 192. 防止重复提交 193. 实现数组笛卡尔积 194. 前端面试中的问题分析方法 195. 防止按钮重复点击 196. 阻止事件冒泡和默认行为 197. 项目难点分析 198. 项目流程 199. 项目经验 200. Promise.all 异常处理 201. 中断 Promise 的方法 202. Promise 并发控制 203. Promise.then 的错误处理 204. Promise then 与 catch 的区别 205. Promise.all 和 Promise.allSettled 的区别 206. Promise 构造函数的执行时机 207. Promise 异步加载图片 208. 使用 Promise 实现定时输出 209. 用 Promise 实现红绿灯交替 210. Property Descriptors 211. 属性遍历方法 212. Proxy Basic Usage 213. Proxy 与 Object.defineProperty 214. 原型与原型链 215. PWA 渐进式网络应用 216. React Fiber 架构与 Vue 的差异 217. React 废弃三个生命周期钩子的原因 218. React 事件与原生事件执行顺序 219. 扫码登录实现方案 220. React Portals 的用途 221. React 与 React-DOM 的关系 222. reduce 方法用途 223. React render 方法原理与触发时机 224. ES6 Reflect 对象的用途 225. Reflect 对象的使用 226. React 为什么不直接使用 requestIdleCallback 227. 正则表达式常用方法 228. RESTful 接口规范 229. requestIdleCallback 与 requestAnimationFrame 230. 简历投递的最佳时间段 231. Script 标签位置的影响 232. 滚动公告组件的鼠标交互 233. 顺序执行异步任务 234. JavaScript 脚本延迟加载方式 235. 浏览器同源策略 236. Script 标签中的 export 报错 237. Service Worker 是什么 238. 用 setTimeout 实现 setInterval 239. setTimeout 零延迟的应用场景 240. setTimeout 运行机制 241. 实现 sleep 函数 242. 单线程与异步的关系 243. SPA 首屏加载优化 244. 严格模式的限制 245. 字符串压缩 246. 字符串长度计算(支持表情符号) 247. 实现字符串 repeat 方法 248. 字符串 toString() 方法调用 249. 同步与异步的区别 250. 尾调用优化与尾递归 251. toPrecision、toFixed 和 Math.round 的区别 252. target 与 currentTarget 的区别 253. JavaScript 倒计时偏差纠正 254. TCP 三次握手和四次挥手 255. 实现二叉树所有路径 256. try...catch 捕获异步错误 257. Tree Shaking 原理 258. typeof NaN 的结果 259. JavaScript 类型转换机制 260. TypeScript 访问修饰符 261. TypeScript 泛型的使用 262. TypeScript:Interface 与 Type 的区别 263. TypeScript 方法重载 264. TypeScript 中的 is 关键字 265. TypeScript 变量声明方式 266. TypeScript 命名空间与模块 267. undefined 与 ReferenceError 的区别 268. 获取 URL 资源文件后缀 269. TypeScript 与 JavaScript 的区别 270. URL 参数编码的必要性 271. JavaScript 版本号排序实现 272. var、let、const 的区别 273. JavaScript 变量提升机制 274. 虚拟 DOM 渲染处理 275. 虚拟列表实现 276. Vue created 与 mounted 的时间差 277. Vue 生命周期中发起请求的最佳位置 278. Vite 工作原理 279. Vue 页面渲染流程 280. Vue2 数组变化检测问题 281. Webpack 5 模块联邦 282. Web Worker 基础 283. WebSocket 心跳机制 284. WebSocket 协议 285. Vue 3 响应式原理 286. WebSocket 低版本浏览器兼容方案 287. Webpack 5 升级要点 288. WebSocket 与 HTTP 的区别 289. 页面白屏原因与优化 290. XML 与 JSON 的区别

TCP 三次握手和四次挥手

TCP 连接建立和断开的过程及原理

问题

TCP 是如何建立和断开连接的?为什么需要三次握手和四次挥手?

解答

三次握手

TCP 是面向连接的协议,三次握手用于建立连接。

初始状态

客户端和服务端都处于 CLOSED 状态。客户端主动打开连接,服务端被动打开连接,结束 CLOSED 状态,开始监听,进入 LISTEN 状态。

第一次握手

客户端随机初始化序号 client_isn,将此序号置于 TCP 首部的序号字段中,同时把 SYN 标志位置为 1,表示 SYN 报文。接着把第一个 SYN 报文发送给服务端,该报文不包含应用层数据,之后客户端处于 SYN-SENT 状态。

第二次握手

服务端收到客户端的 SYN 报文后,随机初始化自己的序号 server_isn,将此序号填入 TCP 首部的序号字段中,把确认应答号字段填入 client_isn + 1,接着把 SYN 和 ACK 标志位置为 1。最后把该报文发给客户端,该报文也不包含应用层数据,之后服务端处于 SYN-RCVD 状态。

第三次握手

客户端收到服务端报文后,向服务端回应最后一个应答报文,该应答报文 TCP 首部 ACK 标志位置为 1,确认应答号字段填入 server_isn + 1,最后把报文发送给服务端。这次报文可以携带客户到服务器的数据,之后客户端处于 ESTABLISHED 状态。

服务端收到客户端的应答报文后,也进入 ESTABLISHED 状态,双方可以开始通信。

为什么需要三次握手?

两次握手不够的原因:

  1. 防止服务器开启无用连接:如果客户端发送的 SYN 报文因网络延迟到达服务器,服务器返回 SYN+ACK 后就建立连接。但如果这个返回报文丢失,客户端不知道连接已建立,会因超时重发请求。服务器会开启多个无用端口,造成资源浪费。

  2. 防止失效请求到达服务器:已失效的客户端请求因网络延迟到达服务器,如果没有第三次握手确认,服务器会误认为是有效请求而建立连接。

通过第三次握手,客户端告诉服务端是否收到了第二次握手的数据,以及连接序号是否有效。服务器根据这个信息决定是否正常建立连接。

四次挥手

TCP 断开连接需要四次挥手,双方都可以主动断开。以客户端主动关闭为例:

第一次挥手

客户端打算关闭连接,发送一个 TCP 首部 FIN 标志位被置为 1 的报文,即 FIN 报文,之后客户端进入 FIN_WAIT_1 状态。

第二次挥手

服务端收到该报文后,向客户端发送 ACK 应答报文,接着服务端进入 CLOSED_WAIT 状态。

第三次挥手

客户端收到服务端的 ACK 应答报文后,进入 FIN_WAIT_2 状态。服务端处理完数据后,向客户端发送 FIN 报文,之后服务端进入 LAST_ACK 状态。

第四次挥手

客户端收到服务端的 FIN 报文后,回一个 ACK 应答报文,之后进入 TIME_WAIT 状态。服务器收到 ACK 应答报文后,进入 CLOSED 状态,完成连接关闭。客户端在经过 2MSL 时间后,自动进入 CLOSED 状态,也完成连接关闭。

为什么需要四次挥手?

因为 TCP 是全双工通信,关闭连接时:

  1. 客户端发送 FIN 表示客户端不再发送数据,但还能接收数据
  2. 服务器收到 FIN 后先回 ACK,但可能还有数据需要处理和发送
  3. 服务器处理完数据后,再发送 FIN 表示同意关闭连接

服务端的 ACK 和 FIN 通常需要分开发送,所以比三次握手多了一次。

为什么 TIME_WAIT 要等待 2MSL?

MSL(Maximum Segment Lifetime)是 TCP 报文在传输过程中的最大生命周期。

客户端等待 2MSL 是为了确认服务器收到了最后的 ACK 报文:

  • 如果服务器在 1MSL 内没收到 ACK,会重发 FIN 报文
  • 客户端在 2MSL 内再次收到 FIN,说明服务器没收到 ACK,客户端重发 ACK 并重置计时器
  • 如果 2MSL 内没再收到 FIN,说明服务器正常收到了 ACK,客户端可以安全关闭

这确保了连接的可靠关闭,也是客户端比服务端晚进入 CLOSED 状态的原因。

关键点

  • 三次握手建立连接:SYN → SYN+ACK → ACK,第三次握手可以携带数据
  • 三次握手的必要性:防止服务器开启无用连接,防止失效请求产生错误
  • 四次挥手断开连接:FIN → ACK → FIN → ACK,因为 TCP 全双工需要双方分别关闭
  • TIME_WAIT 等待 2MSL 是为了确保服务器收到最后的 ACK,保证连接可靠关闭
  • 服务端的 ACK 和 FIN 分开发送,因为可能还有数据需要处理